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Chaotic advection in compressible helical flow
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Compressible helical flow with divvÞ0 drastically increases the area of chaotic dynamics and mixing
properties when the helicity parameter is spatially dependent. We show that the density dependence on thez
coordinate can be incorporated in new variables in a way that leads to a Hamiltonian formulation of the system.
This permits the application of various important results like the Kolmogorov-Arnold-Moser theory and,
particularly, an understanding of why and in which sense the compressible helical flow is ‘‘more chaotic’’ than
the incompressible one. Simulation demonstrates this property for an analog of theABC flow. An interesting
type of the dynamical system with ‘‘dense’’ island chains is described.@S1063-651X~99!00109-9#

PACS number~s!: 05.45.2a, 03.50.2z, 44.35.1c
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I. INTRODUCTION

Helical flow represents a stationary solution of the Eu
equation with constant Bernoulli function and it satisfies
equation

curlv5kv, ~1.1!

with a helicity parameterk which is not necessarily a con
stant. Interest in Eq.~1.1! emerged long ago and is still ac
tive: it is a good model for studying the topology of fie
lines and advection@1,2#, and it has interesting application
in the understanding of turbulence@3,4# and generation of
magnetic fields@3,5,2#. It is worth mentioning that replace
ment of v by B leads to the equation for a force-free ma
netic field. A particular example of solution of Eq.~1.1!,
known asABCflow @6,7#, was the subject of numerous pu
lications on chaotic advection@8–10# and the fast magnetic
dynamo problem@7#. Another type of solution of Eq.~1.1!
with generalized symmetry of crystal or quasicrystal ty
was considered as a source of the emergence of fluid stoc
tic webs@10,11# for advected particles with anomalous tran
port along the webs@12,13#.

All studies mentioned above considered

k5const, ~1.2!

which implies the incompressibility condition divv50.
There was a special reason for such restriction because o
Arnold theorem@6#: the topology of field lines is trivial for
nonhelical incompressible steady flow as well as for a hel
one if kÞconst. The last statement follows immediate
from Eq. ~1.1! and from the equation for field lines

ṙ5v, ~1.3!

which coincides with the equation for advected particl
where the dot means derivative with respect to timet. As a
consequence of the theorem, trajectories of advected
ticles are trivial, i.e., Eq.~1.3! is integrable and has a non
trivial integral of motionk5k(r ). This explains the motiva-
tion for the choice ofk5const when, following the sam
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theorem of Arnold, the dynamics can be nontrivial, i.e., ch
otic. The fact that a fast magnetic dynamo can be gener
only by chaotic field lines made the case of nonuniform h
licity parameterk5k(r ) uninteresting, creating a strang
situation that was described in detail in@14#: for a typical
~from the physical point of view! situation ofk5k(r ), ad-
vected particles always have regular~nonchaotic! dynamics
that are nontypical~again, from the physical point of view!.

It was proposed in@14# to remove the condition of incom
pressibility and it was conjectured that in that case soluti
of Eq. ~1.1! with a typical conditionk5k(r ) produce a typi-
cal ~chaotic! dynamics of the advected particles. Here w
present a detailed study of the role of compressibility in g
erating chaotic advection in helical flow. We will also d
scribe a dynamical system with unusual properties, wh
emerges due to the compressibility of the flow. It is fou
that the compressibility can increase the mixing property
chaotic advection.

II. HAMILTONIAN EQUATIONS ALONG TRAJECTORIES
OF ADVECTION

In this section we show the existence of a Hamiltoni
form for the advected particles in compressible helical flo
For a stationary flow

div~rv!50 ~2.1!

and, without the loss of generality, we can simply setr5k
@see Eq.~1.1!#,

div~kv!50. ~2.2!

Consider, for simplicity, the casek5k(z) and rewrite the
advection equation~1.3! in the form

d

dt
r5kv, ~2.3!

where a new variablet is introduced instead oft by the
equation
2788 © 1999 The American Physical Society
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dt

dt
5k„z~ t;k0 ,y0 ,z0!…, ~2.4!

with initial conditions x0 ,y0 ,z0 at t50 and the restriction
kÞ0, ` at any finite point~x,y,z!.

Three equations~2.3! can be written in Hamiltonian form
using the condition~2.2!. This condition can be considere
as a constraint for Eq.~2.3!. After excluding the constrain
~2.2! and due to the property that the magnitude ofkv is
preserved, which follows from Eq.~2.2!, we can transform
system~2.3! into a Hamiltonian form using an appropria
choice of variables~see, for example,@11#!. The choice of
Hamiltonian representation is not unique but it does not
fluence the phase space structure and the physical resul
the advection@1#.

Let us write

dx

dz
5

vx

vz
,

dy

dz
5

vy

vz
~2.5!

instead of Eq.~2.3!. Let us considerx5x(z), y5y(z) as
independent phase-space variables. A change from Eq.~2.5!
to a Hamiltonian form of the equations can be done us
some general type of transformation from~x,y! to ~x,p! vari-
ables with

p~x,y,z!5k~z!E
0

y

vz~x,y8,z!dy8. ~2.6!

Let us define

H5H~x,p,z!5k~z!H E
0

y

vx~x,y8,z!dy8

2E
0

x

vy~x8,0,z!dx8J . ~2.7!

Then it follows from Eqs.~2.5!–~2.7! that

dx

dz
5

]H

]p
,

dp

dz
52

]H

]x
, ~2.8!

i.e., H is the Hamiltonian function for canonically conjuga
pair ~x,p! and z plays the role of time variable. Again, w
considerx5x(z), p5p(z) as independent variables inste
of the pair ~x,y!. The first equation in Eq.~2.8! follows di-
rectly from Eq.~2.7! and definition~2.6!. To prove the sec-
ond one, consider the expression

]H

]x
5k~z!H E

0

y ]vx~x,y8,z!

]x
dy82vy~x,0,z!J ~2.9!

and use condition~2.2!, which gives
-
for

g

]H

]x
52E

0

y

k~z!
]vy~x,y8,z!

]y8
dy8

2E
0

y ]

]z
@k~z!vz~x,y8,z!#dy82k~z!vy~x,0,z!

52k~z!vy~x,y,z!2E
0

y ]

]z
@k~z!vz~x,y8,z!#dz.

~2.10!

From Eqs.~2.6! and ~2.5! we have

dp

dz
5k~z!vz

dy

dz
1E

0

y ]

]z
@k~z!vz~x,y8,z!#dy8

5k~z!vy~x,y,z!1E
0

y ]

]z
@k~z!vz~x,y8,z!#dy8.

~2.11!

Comparing Eqs.~2.10! and ~2.11! proves the second equa
tion ~2.8!. There are other Hamiltonian representations wh
may be convenient for different situations depending on
considered flow@11#.

The existence of an even local Hamiltonian form for t
advection equation~2.3! in the compressible case permits
to apply Hamiltonian dynamics theory. In particular, we c
immediately state that a generic three-dimensional hel
compressible flow generates advection with chaotic traje
ries in analogy to the statement that a Hamiltonian sys
with 11

2 degrees of freedom possesses, typically, chaotic
jectories @1,11#. Moreover, we expect the existence of a
infinite number of islands which are isolated from the s
chastic sea and which are filled by invariant curves accord
to the Kolmogorov-Arnold-Moser~KAM ! theory. The
Hamiltonian type of chaos means also the absence of stra
attractors in the presence of compressibility. In addition,
Sec. V we will comment on why the compressibility of th
type considered here leads to a ‘‘stronger’’ chaos than in
incompressible case.

III. BASIC EQUATIONS

Consider an example of the compressible flow obtained
@14#:

vx524
dW

dz
sinx24W siny1e sinz,

vy524
dW

dz
siny14W sinx1e cosz, ~3.1!

vz54
W

k
~cosx1cosy!,

wheree is a constant, the variablez is introduced instead o
z by the equation

dz

dz
5k~z!, ~3.2!
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FIG. 1. Poincare´ section of trajectories inz
50 plane for theABC flow with e50.05.
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andW5W(z) is a solution of the equation

W91~121/k2!W50. ~3.3!

For the case ofk51 andW5const, the system~3.1! con-
verts to a particular case of theABC flow. We can say that
Eq. ~3.1! is a compressible analog of theABCflow and refer
to it as theCABCflow. Field ~3.1! satisfies Eq.~1.1! with an
arbitrary helicity parameter functionk(z).

The advection equation~1.3! that corresponds to Eq.~3.1!
can be written as

ẋ524
dW

dz
sinx24W siny1e sinz,

ẏ524
dW

dz
siny14W sinx1e cosz, ~3.4!

ż54
W

k
~cosx1cosy!5

1

k
ż,

where we use the condition~3.2!. For the incompressible
uniform case (k51, W5const), the system~3.4! is reduced
to theABC flow

ẋ524W siny1e sinz,

ẏ54W sinx1e cosz, ~3.5!

ż54W~cosx1cosy!.

We will consider the nonuniformity of the helicity paramet
~and density! in the form

k5k~z!5@114/l 216/l 2 cosh2~z/l !#21/2, ~3.6!
with a characteristic length scalel of the nonuniformity.
The corresponding solution of Eq.~3.3! has a soliton shape

W51/cosh2~z/l !. ~3.7!

The uniform case corresponds to the limitl →`, i.e., k
→1, W→1, which is also the case of incompressible flo
Thus, advection governed by Eqs.~3.4!, ~3.6!, and~3.7! cor-
responds to theCABCflow, and we can observe changes
the advection pattern when the compressible flow approac
the incompressible limit by smooth change of the only p
rameterl .

IV. RESULTS OF SIMULATIONS

It is worthwhile to start a discussion of advection with th
incompressible case described by theABC model ~3.5! with
W[1. Fore50, the dynamics of a particle in the~x,y! plane,
z5const, is integrable and can be interpreted without a
problems. The dynamics along thez axis is trivially obtained
by integration of the right-hand side of the third equation
Eq. ~3.5!, wherex,y are known functions of time. Applying
eÞ0 we make the dynamics nontrivially three dimension
and, therefore, chaotic@8–10#.

The Poincare´ map of a number of trajectories is shown
Fig. 1. Points on the planez50 in Fig. 1 are obtained as th
points of intersection of a trajectory with the planez50 of a
unit cell: x,y,zmod 2p. Closed orbits correspond to invarian
cylinders alongz, while the chaotic zone near the destroy
saddles belongs to the only trajectory which performs a r
dom walk along the stochastic web@10# bounded in thez
direction. The stochastic web was introduced and inve
gated in@10# for theABCflow and some other types of flow
with symmetry and quasisymmetry. This web signifies
three-dimensional connected channel of finite measure a
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FIG. 2. Sample of trajectory for theCABC
flow, with e50.9, l 512.
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which there exists three-dimensional mixing. The pattern
different in different planes of sectionz5const, which is
why we do not see that the web is a connected net. It
also shown in@10# that the widthdr of the web is

dr;e. ~4.1!

In Fig. 2 we present a typical trajectory in a slab geome
using thez variable instead ofz. The trajectory is bounded in
z. More detailed insight about trajectories comes from Fig
The parameterl provides a characteristic length scale of t
nonuniformity of the helicity parameterk(z). One can con-
sider l ;1 as a strong nonuniformity case. The correspo
ing Poincare´ map of trajectories is given in Fig. 3 for syste
~3.4!, with domain xP(22p,2p); yP(22p,2p); z
(2`,`), and a fairly large number of initial conditions. Th
phase portrait in the planez50 @Fig. 3~a!# displays invariant
curves and domain of chaotic dynamics that covers the m
part of the plane. Magnification of a fragment of the~x,y!
plane is shown in Fig. 3~b! that demonstrates connectedne
of different chaotic areas. The plane (z,x) is shown in Fig.
3~c! for y52p/2. It is clearly seen that the dynamics alon
z ~or alongz! is bounded by invariant curves which mak
the compressible case strongly different from the inco
pressible one. Upper and lower parts of the chaotic dynam
in Fig. 3~c! are not disjointed and their connection appe
for different values ofy @see Fig. 3~d!#.

Comparing Fig. 3~a! to Fig. 1 we conclude that in spite o
the small value ofe50.05, the area of chaotic dynamic
increases in the compressible case. Even the decrease ie in
Fig. 4 does not sufficiently change the pattern, although
process of mixing slows down. In doing this comparison
mean the absence of big islands atCABCflow for small e if
one compares them to the sizes of islands for theABC flow
with the samee. For a more adequate comparison, we ne
to consider a periodic dependence ofk(z).

We can interpret the bounded dynamics alongz in Fig.
3~c! by applying Arnold’s theorem on the integrability of th
is

s

y

.

-
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-
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advection to incompressible flow withkÞconst. Level of
compressibility can be measured by the derivative

c5Ul dln@k~z!/k~`!#

dz U. ~4.2!

Consider the asymptoticsz/l →`. Then from Eqs.~3.6! and
~4.2! we have

c5O„exp~22z/l !…. ~4.3!

It follows from Eq. ~4.3! that the compressibility is ex
tremely small forz@l , and one can expect integrable d
namics except for, maybe, exponentially narrow domai
The emergence of integrable solutions confines the dynam
alongz as in Fig. 3~c!.

The case of a large value ofl will be referred to as the
adiabatic case. An example is given in Fig. 5. Surprisingly
shows that almost all the area of motion belongs to the
chastic sea, and the size of islands becomes very sma
Fig. 5~b! we show a case of a much smaller value ofe
50.005 with the same initial condition and the same co
puting time as in Fig. 5~a!. Chaotic mixing covers the sam
area but slowly, more due to the smaller value ofe. Compar-
ing Fig. 5 and Fig. 1, we conclude that compressibility en
mously increases the mixing domain, especially in the ad
batic case. More precisely, for smalle the chaotic region in
the CABC flow is of the order 1 in the~x,y! plane. On the
other hand, the area of chaotic advection domain in the
~x,y! cell of theABC flow is of ordere.

V. ADVECTION IN A STRATIFIED FLOW

To understand the emergence of strong mixing in Fig
let us consider the case ofe50. Equation~3.1! for the flow
transforms into

vx524
dW

dz
sinx24W siny,
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FIG. 3. Poincare´ section of trajectories for the
CABC flow with e50.95, l 51.1. ~a! A full
cell in the ~x,y! plane. ~b! Magnification of the
central part of~a!. ~c! The same in the (z,x)
plane; y52p/2. ~d! The same in the (z,x)
plane;y52p.
vy524
dW

dz
siny14W sinx,

~5.1!

vz54
W

k
~cosx1cosy!,

which corresponds to a stratified flow alongz. The corre-
sponding incompressible case (W5const,k51) gives a par-
ticular two-dimensional~2D! case of theABC flow,

vx524W siny,

vy54W sinx, ~5.2!

vz54W~cosx1cosy!.



PRE 60 2793CHAOTIC ADVECTION IN COMPRESSIBLE HELICAL FLOW
FIG. 3. ~Continued!.
fir
Since the third equation is simply expressed through the
two equations, the corresponding advection equations

ẋ524W siny,

ẏ54W sinx, ~5.3!

ż54W~cosx1cosy!
stare trivially integrable.
In contrast to the incompressibleABCflow, the equations

for the CABCadvection fore50,

ẋ524
dW

dz
sinx24W siny,
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FIG. 4. Same as in Fig. 3~a!
but for e50.005,l 51.1.
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ẏ524
dW

dz
siny14W sinx,

~5.4!

ż54
W

x
~cosx1cosy!,

seem to be nonintegrable. Indeed, in deriving Eq.~5.4! we
did not use any restriction on the dependencek5k(z). In
the case thatk(z) is periodic onz, the same periodic prop
erty can be applied toW(z) @compare to Eq.~3.3!#. There-
fore the system~5.4! can be reduced to a typical Hamiltonia
system with a periodic perturbation. Since the system w
W5const has a separatrix, we can immediately conclude
occurrence of stochastic layers of finite width for a perio
perturbationW5W(z) @11#. Periodic perturbation withW
Þconst is a result of compressibility, i.e.,kÞconst, and in
this way compressibility increases the effective number
degrees of freedom of the system~5.4! from 1 to 11

2. In the
case whenk(z) is nonperiodic and smoothly localized alon
z @k(z)→0 for z→6`# the system is still with 112 degrees of
freedom although it is not easy to prove the existence
chaos. We consider a numerical simulation of the probl
for this situation. A Poincare´ map corresponding to the sys
tem ~5.4! in the planez50 for two values ofl 51.1 and 20
is presented in Fig. 6. The plot in Fig. 6~a! shows many
islands of different sizes. There are also many dots or s
dashes. Magnification shows that all of them are, in fact, t
narrow islands or island chains. The adiabatic case@Fig.
6~b!# has an even more drastic pattern where these na
tiny islands are distributed fairly densely. We were unable
pick a chaotic trajectory, and any initial condition take
started a trajectory that belongs to a resonance set of isla
Actually, different islands of the same resonance ch
h
e

f

f

rt
y

w
o

ds.
n

should be separated by a stochastic layer which can be
ponentially small and invisible.

To understand better the type of solutions of Eq.~5.4!, we
plot the periodic elliptic and hyperbolic points in Fig. 7
where we consider only cycles with periods~1–26! of cross-
ings the planez50. The dense set of elliptic and hyperbol
points is in correspondence to the dense sets of island ch
in Fig. 6. Even very small perturbation witheÞ0 leads to an
overlapping of the island chains and induces a global cha
dynamics. The pattern of distribution of the stagnation poi
can explain increased mixing of the compressible flow,
though we still need an explanation of why the islands
narrow and dense. It is worthwhile to mention that the ca
of the initial system~3.1! can include very narrow islands i
addition to large ones, as it was found recently for the ad
batic case in@15# for a Hamiltonian model with 112 degrees of
freedom.

VI. CONCLUDING REMARKS

Considering compressible generalization of theABC flow
we have come across an interesting phenomenon and a
teresting dynamical system. We have observed much st
ger global mixing properties than for the incompressib
case. The mixing property prevails over almost the en
phase space, even for the small value of the parametere that
comes with a dependence on thez coordinate. The area o
chaotic dynamics is of order one, whereas for theABC flow
for the incompressible case the area of chaotic dynamics
order e. Thus, compressibility increases the mixing area
the ~x,y! plane but makes the area bounded inz direction.

Since a Hamiltonian formulation of the advection
CABCflow is possible, the corresponding methods of ana
sis of Hamiltonian dynamics can be applied. For the cons
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FIG. 5. Same as in Fig. 3~a!
but for l 520 and e50.05 ~a!,
0.005~b!. l 51.1.
te
ys
th
p
a

ng

ds,
e

ered case, we encounter a new kind of a dynamical sys
with dense distribution of thin and tiny islands. Such a s
tem is very sensitive to even small perturbations since
resonances can easily overlap as a result of the imposed
turbation. The last remark is related to the problem of a f
kinematic dynamo@4,6,16# ~see also@17#, and references
therein!. The problem is related to an exponentially growi
magnetic fieldB that satisfies the equations
m
-
e
er-
st

]B

]t
1$v,B%1B div v5

1

Rm
DB, ~6.1!

where$,% denotes the Poisson bracket for two vector fiel
and Rm is the magnetic Reynolds number. Mixing of th
field lines of the vector fieldv is crucial for generating the
magnetic field for the incompressible case divv50. In the
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FIG. 6. Same as in Fig. 3~a!
but for e50 and l 51.1 ~a!, 20
~b!.
t
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t
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compressible case ofCABC flow we should speak abou
mixing of the advected particles rather than about field lin
The emergence of strong mixing with small characteris
scales can strongly influence the growth rate ofB. The scale
l can be considered as a control parameter for the comp
ible situation. At the moment we cannot predict the magne
field growth rate. On the one hand, we have a smaller s
s.
c

ss-
ic
le

of mixing and, on the other hand, we can observe from sim
lation the decreasing of the trajectory dispersion~Lyapunov
exponents!. We hope to discuss this problem in more det
in another paper. Here we only mention that compressibi
may lead to a new interesting physics in magnetic field g
eration.

An important comment can be made for a force-free m
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FIG. 7. Distributions of saddle points~a! and
elliptic points ~b! for the CABC flow with e50,
l 51.1 with a period within interval~1–26!.
on
en

h

nt
art-
4.
netic field which satisfies the same equation as Eq.~1.1!,

curlB5kB. ~6.2!

In contrast to the velocity fieldv, we always have divB
50 and the case ofk5k(r ) leads to the integrability of the
equations for the magnetic field lines. Nevertheless, n
trivial situations for the magnetic field lines can occur wh
-

the vector fieldsB and v are coupled. An example of suc
solutions was recently proposed in@16#.
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