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Chaotic advection in compressible helical flow
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Compressible helical flow with diw+#0 drastically increases the area of chaotic dynamics and mixing
properties when the helicity parameter is spatially dependent. We show that the density dependen@e on the
coordinate can be incorporated in new variables in a way that leads to a Hamiltonian formulation of the system.
This permits the application of various important results like the Kolmogorov-Arnold-Moser theory and,
particularly, an understanding of why and in which sense the compressible helical flow is “more chaotic” than
the incompressible one. Simulation demonstrates this property for an analogAB@#ow. An interesting
type of the dynamical system with “dense” island chains is descrip8ti063-651X99)00109-9

PACS numbds): 05.45—a, 03.50-z, 44.35+cC

[. INTRODUCTION theorem of Arnold, the dynamics can be nontrivial, i.e., cha-
otic. The fact that a fast magnetic dynamo can be generated
Helical flow represents a stationary solution of the Euleronly by chaotic field lines made the case of nonuniform he-
equation with constant Bernoulli function and it satisfies thelicity parameterx=«(r) uninteresting, creating a strange

equation situation that was described in detail [ib4]: for a typical

(from the physical point of vieysituation ofx=«(r), ad-

curlv= kv, (1.9 vected particles always have regulaonchaoti¢ dynamics

_ . . ) that are nontypicalagain, from the physical point of view
with a helicity parametek which is not necessarily a con- It was proposed ifi14] to remove the condition of incom-

stant. Interest in Eq(1.1) emerged long ago and is still ac- yressipility and it was conjectured that in that case solutions
tive: it is @ good model for studying the topology of field o £q (1.1) with a typical conditionk= «(r) produce a typi-
lines and advectiofl,2], and it has interesting applications (5| (chaotiy dynamics of the advected particles. Here we
in the understanding of turbuleng8,4] and generation of = ,oqent a detailed study of the role of compressibility in gen-
magnetic field43,5,2. It is worth mentioning that replace- grating chaotic advection in helical flow. We will also de-
ment of v by B leads to the equation for a force-free mag-g¢rine a dynamical system with unusual properties, which
netic field. A particular example of solution of EQL.1),  emerges due to the compressibility of the flow. It is found

known asABC flow [6,7], was the subject of numerous pub- {hat the compressibility can increase the mixing property of
lications on chaotic advectiof8—10] and the fast magnetic -haotic advection.

dynamo probleni7]. Another type of solution of Eq1.1)
with generalized symmetry of crystal or quasicrystal type
was considered as a source of the emergence of fluid stochd
tic webs[10,11] for advected particles with anomalous trans-
port along the web§12,13. _ In this section we show the existence of a Hamiltonian

All studies mentioned above considered form for the advected particles in compressible helical flow.
For a stationary flow

L _HAMILTONIAN EQUATIONS ALONG TRAJECTORIES
OF ADVECTION

K=const, (1.2
which implies the incompressibility condition dix=0. div(pv)=0 @D
There was a special reason for such restriction because of t%%d without the loss of generality. we can simplv set
Arnold theorem[6]: the topology of field lines is trivial for seé Eq(1.1)] 9 Y, Ply petK
nonhelical incompressible steady flow as well as for a heIicaE a3l

one if k#const. The last statement follows immediately . _

from Eg.(1.1) and from the equation for field lines div(xv)=0. @2

(1.3 Consider, for simplicity, the case= k(z) and rewrite the
' advection equatiofil.3) in the form

which coincides with the equation for advected particles,
where the dot means derivative with respect to timas a d _

. - — I =KV, (2.3
consequence of the theorem, trajectories of advected par- dr
ticles are trivial, i.e., Eq(1.3) is integrable and has a non-
trivial integral of motionk = «(r). This explains the motiva- where a new variabler is introduced instead of by the
tion for the choice ofk=const when, following the same equation

r=v,
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dt _ oH y vy(xy',z)
E—K(Z(t-Ko,yo-Zo)), (2.9 a_x__j K(Z)Tdy
y d
with initial conditionsXy,Yq,Zg at t=0 and the restriction —J a—[K(Z)VZ(X,y’,Z)]dy’—K(Z)Vy(X,O,Z)
e L 00Z
k#0, o« at any finite point(x,y,2.
Three equationg§2.3) can be written in Hamiltonian form v o
using the condition2.2). This condition can be considered = —K(z)vy(x,y,z)—f &—[K(Z)VZ(X,y,,Z)]dZ.
as a constraint for Eq2.3). After excluding the constraint 002
(2.2 and due to the property that the magnitudexof is (2.10

preserved, which follows from Ed2.2), we can transform

system(2.3) into a Hamiltonian form using an appropriate From Egs.(2.6) and(2.5) we have

choice of variablegsee, for exampl€g,11]). The choice of

Hamiltonian representation is not unique but it does not in- dp dy yd , ,
fluence the phase space structure and the physical results for dz K(Z)VZE+ OE[K(Z)VZ(X’V 2)]dy
the advectiori1].

Let us write yd
k(@ .2+ [ STk 21y

dx v, dy vy (2.11
dz v, dz v, 29
z z
Comparing Eqgs(2.10 and (2.11) proves the second equa-
tion (2.8). There are other Hamiltonian representations which
instead of Eq.(2.3). Let us considex=x(z), y=y(2) as  may be convenient for different situations depending on the
independent phase-space variables. A change fromi25).  considered flow11].
to a Hamiltonian form of the equations can be done using The existence of an even local Hamiltonian form for the
some general type of transformation framy) to (x,p) vari-  advection equatiof2.3) in the compressible case permits us
ables with to apply Hamiltonian dynamics theory. In particular, we can
immediately state that a generic three-dimensional helical
y compressible flow generates advection with chaotic trajecto-
p(x,y,z)=;<(z)f v,(x,y',z)dy’. (2.6 ries in analogy to the statement that a Hamiltonian system
0 with 11 degrees of freedom possesses, typically, chaotic tra-
jectories[1,11]. Moreover, we expect the existence of an
Let us define infinite number of islands which are isolated from the sto-
chastic sea and which are filled by invariant curves according
to the Kolmogorov-Arnold-Moser(KAM) theory. The
Hamiltonian type of chaos means also the absence of strange
attractors in the presence of compressibility. In addition, in
Sec. V we will comment on why the compressibility of the
type considered here leads to a “stronger” chaos than in the
incompressible case.

y
H=H(x,p,2)= K(z){ JO Vi(X,y',z)dy’

_ Joxvy(x’,o,z)dx’}. (2.7

Then it follows from Egs(2.5—(2.7) that lll. BASIC EQUATIONS

Consider an example of the compressible flow obtained in

dx_aH dp_ dH 0g 14}
d_z_%a E_ 51 (')

dw . .
Vy= —4d—§smx—4Wsmy+esm§,

i.e., H is the Hamiltonian function for canonically conjugate

pair (x,p) and z plays the role of time variable. Again, we _ dw .
considerx=x(z), p=p(z) as independent variables instead Vy= —4d—§smy+4Wsmx+ € Cos{, (3.9)
of the pair(x,y). The first equation in Eq(2.8) follows di-
rectly from Eq.(2.7) and definition(2.6). To prove the sec- w
ond one, consider the expression vz=4?(cosx+ cosy),
JH y v (X,y',2) wheree is a constant, the variablgis introduced instead of
K [fo X dy'—vy(x,02); (2.9  zby the equation

d¢
and use conditiori2.2), which gives dz «(2), (32
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FIG. 1. Poincaresection of trajectories iz
=0 plane for theABC flow with e=0.05.
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andW=W({) is a solution of the equation with a characteristic length scalé of the nonuniformity.
The corresponding solution of E(.3) has a soliton shape
W'+ (1-1/k?)W=0. (3.3
W=1/cosK(¢l/). (3.7
For the case ok=1 andW=const, the systeni3.1) con-
verts to a particular case of tiBC flow. We can say that The uniform case corresponds to the limit—, i.e., «
Eqg. (3.1) is a compressible analog of tABCflow and refer 1, W—1, which is also the case of incompressible flow.
to it as theCABCflow. Field (3.1) satisfies Eq(1.1) with an  Thus, advection governed by Ed8.4), (3.6), and(3.7) cor-

arbitrary helicity parameter functior(z). responds to th€ ABCflow, and we can observe changes of
The advection equatiofi.3) that corresponds to E¢3.1)  the advection pattern when the compressible flow approaches
can be written as the incompressible limit by smooth change of the only pa-
rameter/’.

dw
X=—4——sinx—4Wsiny+ e sin{,
d¢g IV. RESULTS OF SIMULATIONS

dw _ It is worthwhile to start a discussion of advection with the
y= —4d—§smy+4W sinx+ € cos{, (34  incompressible case described by *BC model(3.5) with
W=1. Fore=0, the dynamics of a particle in thig,y) plane,
W 1. z=const, is integrable and can be interpreted without any
z=4—(cosx+cosy)= —¢, problems. The dynamics along th@xis is trivially obtained
K K by integration of the right-hand side of the third equation in
Eq. (3.5, wherex,y are known functions of time. Applying
€#0 we make the dynamics nontrivially three dimensional
and, therefore, chaoti@—10.
The Poincarenap of a number of trajectories is shown in

where we use the conditio(8.2). For the incompressible
uniform case k=1, W=const), the syster(B.4) is reduced
to the ABC flow

X=—4Wsiny+ esinz, Fig. 1. Points on the plare=0 in Fig. 1 are obtained as the
points of intersection of a trajectory with the plane 0 of a

y=4W sinx+ e cos, (3.5 unit cell: x,y,zmod 2. Closed orbits correspond to invariant
cylinders alongz, while the chaotic zone near the destroyed

7= 4W(cosx+ cosy). saddles belongs to the only trajectory which performs a ran-

dom walk along the stochastic weth0] bounded in thez
We will consider the nonuniformity of the helicity parameter direction. The stochastic web was introduced and investi-
(and densityin the form gated in[10] for the ABC flow and some other types of flow
with symmetry and quasisymmetry. This web signifies a
k=k({)=[1+4l/%+6l/?cost((1/)] Y2 (3.6) three-dimensional connected channel of finite measure along



PRE 60 CHAOTIC ADVECTION IN COMPRESSIBLE HELICAL FLOW 2791

FIG. 2. Sample of trajectory for th€ABC
flow, with e=0.9, /=12.

which there exists three-dimensional mixing. The pattern isadvection to incompressible flow witk# const. Level of

different in different planes of section=const, which is compressibility can be measured by the derivative

why we do not see that the web is a connected net. It was

also shown if10] that the widthér of the web is ZdIn[ k(&) k()]
C:

dg

Consider the asymptoti¢g/— . Then from Eqs(3.6) and
(4.2 we have

In Fig. 2 we present a typical trajectory in a slab geometry
using thef variable instead of. The trajectory is bounded in c=0(exp(—2¢17)). 4.3
{. More detailed insight about trajectories comes from Fig. 3.
The parameter” provides a characteristic length scale of thelt follows from Eq. (4.3) that the compressibility is ex-
nonuniformity of the helicity parametet(z). One can con- tremely small for{>/", and one can expect integrable dy-
sider/~1 as a strong nonuniformity case. The correspondhamics except for, maybe, exponentially narrow domains.
ing Poincaremap of trajectories is given in Fig. 3 for system The emergence of integrable solutions confines the dynamics
(3.4, with domain xe(—2w2w); ye(—2m2w); z along{ as in Fig. 3c).
(—w,%), and a fairly large number of initial conditions. The  The case of a large value of will be referred to as the
phase portrait in the plare=0 [Fig. 3(a)] displays invariant adiabatic case. An example is given in Fig. 5. Surprisingly, it
curves and domain of chaotic dynamics that covers the maighows that almost all the area of motion belongs to the sto-
part of the plane. Magnification of a fragment of they) chastic sea, and the size of islands becomes very small. In
plane is shown in Fig. ®) that demonstrates connectednessFig. 5b) we show a case of a much smaller value eof
of different chaotic areas. The plang,X) is shown in Fig. =0.005 with the same initial condition and the same com-
3(c) for y=— /2. It is clearly seen that the dynamics along puting time as in Fig. &). Chaotic mixing covers the same
¢ (or alongz) is bounded by invariant curves which makes area but slowly, more due to the smaller valueo€ompar-
the compressible case strongly different from the incom-ng Fig. 5 and Fig. 1, we conclude that compressibility enor-
pressible one. Upper and lower parts of the chaotic dynamicgiously increases the mixing domain, especially in the adia-
in Fig. 3(c) are not disjointed and their connection appeardoatic case. More precisely, for smalthe chaotic region in
for different values ofy [see Fig. &d)]. the CABC flow is of the order 1 in thex,y) plane. On the

Comparing Fig. &) to Fig. 1 we conclude that in spite of other hand, the area of chaotic advection domain in the unit
the small value ofe=0.05, the area of chaotic dynamics (x,y) cell of the ABCflow is of ordere.
increases in the compressible case. Even the decreasa in

k 4.2
or~e. 4.1

Fig. 4 does not sufficiently change the pattern, although the V. ADVECTION IN A STRATIFIED ELOW
process of mixing slows down. In doing this comparison we S
mean the absence of big islandsCABC flow for small € if To understand the emergence of strong mixing in Fig. 5,

one compares them to the sizes of islands forABE flow et us consider the case ef=0. Equation(3.1) for the flow
with the samee. For a more adequate comparison, we needransforms into
to consider a periodic dependencexdfz).

We can interpret the bounded dynamics alaghip Fig.

dw | i
3(c) by applying Arnold’s theorem on the integrability of the Vx= 4 g Sinx—4Wsiny,

dZ
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FIG. 3. Poincaresection of trajectories for the
CABC flow with €=0.95, /=1.1. (a A full
cell in the(x,y) plane. (b) Magnification of the
central part of(a). (c) The same in the {x)
plane; y=—a/2. (d) The same in the {x)
plane;y=—.

(b)

1.5

) ) sponding incompressible casé&/ €& const,x=1) gives a par-
vy=—4 ac siny +4Wsinx, ticular two-dimensiona(2D) case of theABC flow,

6.1 vy=—4Wsiny,

W
VZ=4;(COSX+COSy)7 v,=4W sinx (5 2)
y= ’ '

which corresponds to a stratified flow alomgThe corre- v,=4W(cosx+ cosy).
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FIG. 3. (Continued.

Since the third equation is simply expressed through the firstre trivially integrable.
two equations, the corresponding advection equations In contrast to the incompressithBC flow, the equations
for the CABC advection fore=0,

x=—4Wsiny,
y=4Wsinx, (5.3

. dw )
. X=—4——sinx—4Wsiny,
7=4W(COSX+ cosy) dg
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FIG. 4. Same as in Fig.(8
but for e=0.005,/=1.1.

should be separated by a stochastic layer which can be ex-

dw .
y= —4d—£smy+4Wsmx, ponentially small and invisible.

(5.4 To understand better the type of solutions of Eqg4), we
’ plot the periodic elliptic and hyperbolic points in Fig. 7,
'z=4v—v(cosx+ cosy), where we consider only cycles with periods-26 of cross-
X ings the plane=0. The dense set of elliptic and hyperbolic
points is in correspondence to the dense sets of island chains
seem to be nonintegrable. Indeed, in deriving Eg4) we  in Fig. 6. Even very small perturbation with# 0 leads to an
did not use any restriction on the dependercex(z). In  overlapping of the island chains and induces a global chaotic
the case thak(z) is periodic onz, the same periodic prop- dynamics. The pattern of distribution of the stagnation points
erty can be applied tdV(z) [compare to Eq(3.3)]. There- can explain increased mixing of the compressible flow, al-
fore the systenf5.4) can be reduced to a typical Hamiltonian though we still need an explanation of why the islands are
system with a periodic perturbation. Since the system withharrow and dense. It is worthwhile to mention that the case
W= const has a separatrix, we can immediately conclude thef the initial system3.1) can include very narrow islands in
occurrence of stochastic layers of finite width for a periodicaddition to large ones, as it was found recently for the adia-
perturbationW=W(z) [11]. Periodic perturbation withV  batic case ii15] for a Hamiltonian model with 1degrees of
#const is a result of compressibility, i.ec<#const, and in  freedom.
this way compressibility increases the effective number of
degrees of freedom of the systdf4) from 1 to 13. In the
case wherk(z) is nonperiodic and smoothly localized along
z[k(2)—0 for z— =] the system is still with 1 degrees of Considering compressible generalization of A&C flow
freedom although it is not easy to prove the existence ofve have come across an interesting phenomenon and an in-
chaos. We consider a numerical simulation of the problenteresting dynamical system. We have observed much stron-
for this situation. A Poincarenap corresponding to the sys- ger global mixing properties than for the incompressible
tem (5.4) in the planez=0 for two values of”=1.1 and 20 case. The mixing property prevails over almost the entire
is presented in Fig. 6. The plot in Fig(&d shows many phase space, even for the small value of the paranedteat
islands of different sizes. There are also many dots or shodomes with a dependence on theoordinate. The area of
dashes. Magnification shows that all of them are, in fact, tinychaotic dynamics is of order one, whereas for ARC flow
narrow islands or island chains. The adiabatic cgSg. for the incompressible case the area of chaotic dynamics is of
6(b)] has an even more drastic pattern where these narroarder . Thus, compressibility increases the mixing area in
tiny islands are distributed fairly densely. We were unable tahe (x,y) plane but makes the area bounded idirection.
pick a chaotic trajectory, and any initial condition taken Since a Hamiltonian formulation of the advection in
started a trajectory that belongs to a resonance set of islandSABCflow is possible, the corresponding methods of analy-
Actually, different islands of the same resonance chairsis of Hamiltonian dynamics can be applied. For the consid-

VI. CONCLUDING REMARKS
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FIG. 5. Same as in Fig.(83
but for /=20 and €=0.05 (a),
0.005(b). /=1.1.

ered case, we encounter a new kind of a dynamical system JB . 1
with dense distribution of thin and tiny islands. Such a sys- 5t +{v,B}+Bdivv= R*AB, (6.1
tem is very sensitive to even small perturbations since the m

resonances can easily overlap as a result of the imposed per-

turbation. The last remark is related to the problem of a faswvhere{,} denotes the Poisson bracket for two vector fields,
kinematic dynamqg4,6,16 (see also[17], and references and R,, is the magnetic Reynolds number. Mixing of the
therein. The problem is related to an exponentially growingfield lines of the vector fields is crucial for generating the
magnetic fieldB that satisfies the equations magnetic field for the incompressible case ¢iv0. In the
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FIG. 6. Same as in Fig.(8
but for e=0 and/=1.1 (a), 20
(b).

compressible case d€ABC flow we should speak about of mixing and, on the other hand, we can observe from simu-
mixing of the advected particles rather than about field lineslation the decreasing of the trajectory dispersibyapunov
The emergence of strong mixing with small characteristicexponents We hope to discuss this problem in more detail
scales can strongly influence the growth ratéofThe scale in another paper. Here we only mention that compressibility
/ can be considered as a control parameter for the compressray lead to a new interesting physics in magnetic field gen-
ible situation. At the moment we cannot predict the magnetieration.

field growth rate. On the one hand, we have a smaller scale An important comment can be made for a force-free mag-
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FIG. 7. Distributions of saddle points) and
elliptic points (b) for the CABC flow with e=0,
/=1.1 with a period within interva({1—26.

netic field which satisfies the same equation as(Ed), the vector fieldB andv are coupled. An example of such
solutions was recently proposed|[it6].

curlB= kB. (6.2
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